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It is generally agreed that intense oscillations of cavity bubbles without collapse, consti- 
tute one of the main reasons for the cavity erosion of materiats. When the dimension of 

a cavity bubble reaches a certain limiting value, strong pressure pulses may occur in the 

surrounding liquid, which can cause erosion by local cyclic loads [l and 21. 
Oscillations of cavity bubbles in a viscous liquid, exhibit a number of distinctive fea- 

tures caused by the viscosity. Authors of [3 and 47 noted the fundamental influence of 
viscosity while investigating the behavior of a spherical cavity in a viscous, incompessi- 

ble liquid. The existence of two different types of motion was discovered : bubbles which 
are smaller than a critical size, are filled slowly in an infinitely long time ; the filling 

of large bubbles takes pIace rapidly with an unlimited accumulation of energy during 

collapse. 
Betow we find that, when the bubble in a viscous incompressible liquid is filled with 

gas, then two modes of motion exist, depending on the initial radius of the bubble, oscil- 

latory or monotonically aperiodic. 
Authors of [5] use dimensional analysis to derive a qualitative formula deiining the 

critical bubble size D, separating the inertial and inertialess mode of expansion of a 

gaseous sphere in a viscous liquid 

where pand p are the dynamic viscosity and density of the iiquid,res~ctively, and r+ 

is the characteristic time of the process, determined experimentally. Below we derive a 
formula for the critical diameter of the gas bubble. 

Let us suppose that a spherical gas bubble is situated in an infinite, viscous, incompres- 

sible liquid, We assume that the pressure and density of the gas are uniform throughout 
the bubble. This of course is true, provided that the vetocity of the boundary of the gas- 

eous sphere is much smaller than the velocity of sound in the gas at a given tempe- 

rature. Viscosity of gas is assumed to be negligible. The following nonlinear, second 
order, differential equation [5] describes the variation in the radius of the bubble 

and the initial conditions are 
R = Ro, dRldt = 0 when t =t 0 

Here R = R (t) is the radius of the bubble, (I denotes the surface tension of the liquid, 

pp denotes constant pressure of the liquid away from the bubble and p’ denotes the pres- 
sure of gas within the bubble. 

Assuming that the process of expansion and contraction of gas within the bubble is 
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adiabatic, we can derive the following relation between p’and_R at any instant 

when n is the adiabatic index and ~‘0 is the initial pressure of gas within the bubble. In 
the case of adiabatic oscillations [6] of a bubble in water, we have n = a/s. We also assume 

that there is no diffusion of gas through the boundary of the bubble. 

The process of obtaining the general solution of (1) is fairly difficult even with various 
simplifying assumptions. Some conclusions concerning the appearance of cavitation 
described by this equation can, however, be drawn by perusing some general properties 
of the integral curves of (1) on the phase plane. This method gives a measure of success 

in the qualitative investigations of nonlinear differential equations. 

Let us introduce the following dimensionless variables: 

Then Eq. (1) becomes 

R 
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we can reduce (4) to the following first order differential equation: 

dy i A_ - rut - bus - a@ - f .,&~e 
du - Yu* 

which has one isolated singulari~ [7] 

y=o, u=u* 
Here u. is the only positive root of 

i- bu’ - eu4 = 0 

Wenotethatu,canbe >I. or <l. 

Near the singularity we can write Eq.(G) as 

dY - (‘,ru,S + 3bu.2) x - oyu,’ L Pa (2, y) 

dr= YU.~ + 01 (2, Y) 

(4) 

(3) 
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0% 
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where x = u - Ut, while P, (r, Y) and Qr( z, Y1 are functions which are second order 
infinitesimals, when t, y are first order infinitesimals. 

Since in the present case 
(sa i 4ru,) U*’ # 0 

we shall use the following characteristic equation 

h2 + au,b + (3b + 4cu,) u*a = 0 CiO) 

to determine the character of the singularity. The discriminant of (10) is equal to 

c/.= (::b + h,) u,s - ‘/, ~Q4~2 (11) 

Investigating the roots of (10) we find that two basically distinct possibilities may exist. 
They are: 

1) roots of the characteristic equation are real, distinct and of the same sign (d < 0) , 

consequently the singularity is a node. All integrat curves in the neighborhood of this 
singularity enter it at the same angle, and the common tangent is given by 

As I --, 0, the velocity of the boundary of the bubble tends also to zero in a linear 
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manner ; 

2) roots of the characteristic equation are complex conjugate. The singular point is a 
focus, each integral curve is contained between two logarithmic spirals and approaches 
the point y -= 0, u = u*, circumscribing it an infinite number of times. The gas bubble 
oscillates infinitely long with diminishing amplitude. 

When d = 9, we have the intermediate case when the characteristic equation (10) has 
a multiple root and the singularity is a degenerate node. All integral curves enter the 
singularity and are tangent at this point to 

Y + *:*r ---X9 

The critical bubble radius separating two distinct modes of behavior, is obtained by 

solving the following pair of equations 

d =- 0, i - bu,’ - cue’ = 0 UT) 

If the initial radius is larger than the critical one, we have a focus, if it is smaller - 
we have a node. In the case of a perfect fluid @ = 0) Eq.(4) can be integrated to yield 

, 
y’u’ + +&_ 12. 4, 

3 p u +$“.+C,u=O 
where cl is a constant of integration. 

Considering this integral near the singularity and neglecting the third and higher order 
infinitesimals, we obtain an equation of the ellipse 

y2u+’ -+ u* (3bu, +- 4ru.2) + f&y i_ rau + C‘ = 0. (e*, es. ca = eonst; c4 < 0) (13) 

with the singularity situated at its center. Here the gas bubble performs a steady oscil- 

I 

a5 

lation. 
It should be noted that there is a distinct difference 

between the process of collapsing of a bubble in a 

viscous liquid and that of expansion/contraction of 
a gaseous bubble discussed above. In the first case 

the surface tension has a qualitative effect on the 
collapse of a cavity (duration of the process remain- 

z?z 

Fig. 1 

of the bubble. 

2 
ing finite for any value of the viscosity coefficient 
[4]), while in the latter case two distinct modes of 
behavior are observed even in the absence of surface 
tension, the only variable being the critical radius 

In particular, putting b = 0 in (12), we obtain 
IIo* = - Ir 

1’ 0 (p0p;)“.25 
(14; 

The actual value of the critical radius is fairly small. e. g. when PO = 1 atm and 
PU’ = 0.2 atm , we have for water Rh = 0.178~10-~ mm and for glycerine, Iiur= 0.24mm. 
Fig. 1 shows the results of a direct computation using Eq. (1). with b = 0, for the values 
No, -: 0.15a10-3 mm< Hn,, It,3 = 1 *10-’ mm > RN and Ror = O.G.fO-*mm > RQ, 
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We study a system of nonlinear differential equations (1). Imposing certain restrictions 

OR the functions appearing on the right in (1) and on the roots of the secular equation, we 

obtain a number of stability theorems, on stability in the large and on the instability of 
the zero solution. 

Let us consider the following system of differential equations 
dz 
yjf- =I p& (‘* II’ . . ., q +...+ P,,(P, (4 11. . _ .* x*1 (.p= 1. 2, . . .I n) (1) 

where PI&are real constants, while functions v‘ are defined and continuous in the region 

givenby (h)t>q ~zljq/~~+...+q<_~, (‘p‘ f’. 0, . . . , 0) E 0) 

In certain isolated cases we can base our deductions about the stability or instability 

of the zero solution of (1) on the properties of the roots of 

det II psr -M)rLJ=O (2) 

For example, we can formulate the following theorems. 
Theorem 1, Let the right sides of (1) be such that the function 

n 

u (L, 2,’ . . ., f) = yJ a,‘p, e. 21’ . . ., InI (3) 
r=r 

where at least one of the numbers 0‘ # 0 , is sign-definite. If, at the same time, Eq. (2) 
has no zero roots, then the zero solution of (1) is unstable. 

Proof. We shaII seek the following linear form 

8 (II. . . ., q =i b,r‘ (4) 
*El 

whose total derivative satisfies, by (l), the relation 


